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(Indolin-3-ylidene)pentacarbonyltungsten, a non-hetero-
atom-stabilized carbene complex of group 6 metal, was success-
fully isolated by the reaction of N-(o-alkynylphenyl)imine
derivative, vinyl ether and tungstenhexacarbonyl under photoir-
radiation. This complex was moderately stable and fully charac-
terized by spectroscopic analysis.

Fischer-type carbene complexes of group 6 metal pentacar-
bonyl have long been employed as a useful reagent in synthetic
organic reactions. High utility of these complexes is partly due to
their stability caused by electron-donation from the heteroatom
on the carbene carbon.1 On the contrary, although non-hetero-
atom-stabilized carbene complexes of group 6 metal pentacar-
bonyl have appeared as a key intermediate in various reac-
tions,2,3 the isolation of such complexes has rarely been
achieved due to their high instability.4,5

We recently reported a novel method for the construction of
polycyclic indole skeletons by the tungstenpentacarbonyl cata-
lyzed reaction of N-(o-alkynylphenyl)imine derivatives (1) and
electron-rich alkenes (Scheme 1).6 It was postulated that novel
tungsten-containing azomethine ylide species were generated
by the reaction of 1 and tungstenpentacarbonyl, and they under-
went [3+2]-cycloaddition reaction with electron-rich alkenes to
afford non-heteroatom-stabilized tungsten carbene complexes
(3), from which 1,2-migration of the substituent R (R = H, alkyl,
aryl) occured to afford polycyclic indole derivatives. Such 1,2-
migration of alkyl or aryl group is quite rare in group 6 metal car-
bene complexes and isolation of the intermediate carbene com-
plex is highly desirable not only for the chemistry of non-hetero-
atom-stabilized carbene complexes but also for the
establishment of the mechanism of this reaction. Herein we wish
to report the successful isolation and characterization of the in-
termediate carbene complex 3 (R = Me, Scheme 1) and the
unique reactivity of this non-heteroatom-stabilized carbene com-

plex.
When Me-substituted alkyne 5 and t-butyl vinyl ether were

treated with a stoichiometric amount of W(CO)6 in THF under
photoirradiation at room temperature, the reaction mixture im-
mediately became deep blue and the color remained even after
removal of the solvent. Further careful investigation revealed
that the deep blue oil could be separated in 12% yield by alumina
column chromatography with hexane-toluene (2:1) as an eluent
at �20 �C without remarkable decomposition, along with the
Me-migrated tricyclic indole derivatives 6 (50% yield, cis:trans
= 55:45, Scheme 2).

Extensive spectroscopic analysis (NMR (1H, 13C, DEPT,
HMBC, HMQC, NOE), IR, high resolution mass spectrometry
(FAB) and elemental analyses) revealed that this blue material
was the (indolin-3-ylidene)pentacarbonyltungsten 7.7 The ab-
sorption of the pentacarbonyl was observed at 2053 and
1909 cm�1 in IR spectra and the carbene carbon was detected
at 310.9 ppm by 13C NMR, which was reasonable as compared
with the values of the reported non-heteroatom-stabilized car-
bene complexes.8 This carbene complex is rather stable and
can be stored for several weeks at �20 �C under Ar without de-
composition. This unexpected stability of 7 can be explained by
considering the existence of a homologous conjugating effect
from the nitrogen through the aromatic ring. This is a quite rare
example of the isolation of non-heteroatom-stabilized group 6
metal pentacarbonyl carbene complex possessing alkyl substitu-
ent.9

Interestingly, although the 1,2-Me-migrated product 6 was
obtained as a mixture of cis- and trans-stereroisomers with
low diastereoselectivity (55:45), the isolated carbene complex
7 was obtained as a single stereoisomer whose stereochemistry
was determined by the measurement of the differential NOE
spectrum as shown in Scheme 2.10 We believe that the carbene
complex 7 is most stable among the possible four isomers as this
has the least steric repulsion between substituents (Me, Ph, and t-
BuO).

Next, we investigated the reactivity of (indolin-3-ylidene)-
pentacarbonyltungsten 7. After several investigations, it was
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found that 7 slowly decomposed in toluene at room temperature
to give the Me-migrated tricyclic indole derivative quantitatively
after 3 days. The product was obtained as a single stereoisomer,
which was confirmed to have the same trans relationship be-
tween the phenyl and t-BuO groups as shown in Scheme 3. This
result strongly supports that, in the W(CO)5 catalyzed prepara-
tion of polycyclic indole derivatives, a very rare 1,2-alkyl-migra-
tion is really occurring through the non-heteroatom stabilized
carbene intermediate 7 as proposed previously.11

Very interestingly, when 7 was left at rt in THF instead of
toluene, decomposition occurred within 1 day and the product
was obtained as a mixture of cis and trans 1,2-Me-migrated
products (cis-6:trans-6 = 45:55) quantitatively (Scheme 3). This
result indicates the existence of the equilibrium between the car-
bene complex 7 and a zwitterionic intermediate 8 through ring
opening and closing reactions (retro-aldol and aldol type reac-
tions) (Scheme 4). We propose that, in THF, recyclization from
8 proceeds in low stereoselectivity to afford up to four stereoiso-
meric carbene complexes, which undergo 1,2-Me-migration to
give the mixture of cis and trans-6 finally.12 Difference of the re-
activity in toluene and THF can be explained by considering the
stability of the zwitterionic intermediate 8, which is expected to
be stabilized in a more polar solvent like THF.

The existence of the zwitterionic intermediate 8 was further
confirmed by the experiment in the presence of D2O. By the
treatment of 7 in THF containing an excess amount of D2O, al-
dehyde 9, which is the hydrolyzed product of 8, was obtained
along with the 1,2-Me-migrated indoles (9:cis-6:trans-6 =
20:24:56, Scheme 5). Formation of the aldehyde moiety and in-
corporation of a deuterium at the 3-position of the indole skele-
ton also support the existence of the zwitterionic intermediate 8,
and thus, the existence of ring opening and closing equilibrium
by retro-aldol and aldol type reactions.

In summary, we have succeeded in isolating the non-hetero-
atom-stabilized tungsten carbene complex, (indolin-3-ylidene)-
pentacarbonyltungsten, possessing aryl and tert-alkyl substitu-
ents on the carbene carbon. This non-heteroatom-stabilized
tungsten carbene complex easily undergoes the 1,2-Me-migra-
tion to afford a tricyclic indole derivative and this result strongly
supports the proposed reaction mechanism of the tungsten-con-
taining azomethine ylides.
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Chem. Commun., 1996, 895. Other examples for the isolation of
non-heteroatom-stabilized carbene complexes, see; c) H. Fischer, S.
Zeuner, and K. Ackermann, J. Chem. Soc., Chem. Commun., 1984,
684. d) K. Miki, T. Yokoi, F. Nishino, K. Ohe, and S. Uemura, J.
Organomet. Chem., 645, 228 (2002).

6 H. Kusama, J. Takaya, and N. Iwasawa, J. Am. Chem. Soc., 124, 11592
(2002).

7 Spectroscopic data of 7; IR (neat) 2917, 2053, 1909, 1607 cm�1; 1H
NMR (500MHz) � ¼ 1:16 (s, 9H), 1.78 (s, 3H), 2.67 (ddd, J ¼ 13:8,
10.7, 2.8Hz, 1H), 3.12 (dd, J ¼ 13:8, 7.8Hz, 1H), 4.73 (dd,
J ¼ 10:7, 7.8Hz, 1H), 4.91 (d, J ¼ 2:8Hz, 1H), 6.70 (brd,
J ¼ 8:5Hz, 1H), 7.00 (ddd, J ¼ 8:5, 8.1, 1.0Hz, 1H), 7.35–7.38 (m,
3H), 7.41–7.46 (m, 2H), 7.63 (ddd, J ¼ 8:5, 8.1, 1.2Hz, 1H), 8.10
(brd, J ¼ 8:5Hz, 1H); 13C NMR (125MHz) � ¼ 24:1, 29.2, 46.2,
61.4, 74.5, 77.6, 103.1, 113.2, 121.9, 125.4, 127.4, 128.8, 136.2,
141.8, 142.1, 151.7, 160.1, 199.2, 207.0, 310.9; HRMS Calcd for
C27H25NO6W, M 643.1191. Found m=z 643.1164.; Anal. Calcd for
C27H25NO6W: C, 50.41; H, 3.92; N, 2.18. Found: C, 50.67; H, 4.12;
N, 2.13.

8 See Ref 1a, 4b, 5c.
9 There are few reports on the synthesis and isolation of alkylcarbene

complexes of group 6 metal pentacarbonyl; see for examples; a) J.
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